Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Front Endocrinol (Lausanne) ; 12: 726967, 2021.
Article in English | MEDLINE | ID: covidwho-1394754

ABSTRACT

In March 2020, the WHO declared coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a global pandemic. Obesity was soon identified as a risk factor for poor prognosis, with an increased risk of intensive care admissions and mechanical ventilation, but also of adverse cardiovascular events. Obesity is associated with adipose tissue, chronic low-grade inflammation, and immune dysregulation with hypertrophy and hyperplasia of adipocytes and overexpression of pro-inflammatory cytokines. However, to implement appropriate therapeutic strategies, exact mechanisms must be clarified. The role of white visceral adipose tissue, increased in individuals with obesity, seems important, as a viral reservoir for SARS-CoV-2 via angiotensin-converting enzyme 2 (ACE2) receptors. After infection of host cells, the activation of pro-inflammatory cytokines creates a setting conducive to the "cytokine storm" and macrophage activation syndrome associated with progression to acute respiratory distress syndrome. In obesity, systemic viral spread, entry, and prolonged viral shedding in already inflamed adipose tissue may spur immune responses and subsequent amplification of a cytokine cascade, causing worse outcomes. More precisely, visceral adipose tissue, more than subcutaneous fat, could predict intensive care admission; and lower density of epicardial adipose tissue (EAT) could be associated with worse outcome. EAT, an ectopic adipose tissue that surrounds the myocardium, could fuel COVID-19-induced cardiac injury and myocarditis, and extensive pneumopathy, by strong expression of inflammatory mediators that could diffuse paracrinally through the vascular wall. The purpose of this review is to ascertain what mechanisms may be involved in unfavorable prognosis among COVID-19 patients with obesity, especially cardiovascular events, emphasizing the harmful role of excess ectopic adipose tissue, particularly EAT.


Subject(s)
COVID-19/metabolism , Cardiomyopathies/metabolism , Intra-Abdominal Fat/metabolism , Obesity/metabolism , Adipose Tissue/metabolism , Adipose Tissue/pathology , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/complications , COVID-19/immunology , Cardiomyopathies/immunology , Cardiomyopathies/pathology , Heart Diseases/immunology , Heart Diseases/metabolism , Heart Diseases/pathology , Humans , Inflammation , Intra-Abdominal Fat/pathology , Obesity/complications , Obesity/immunology , Obesity/pathology , Pericardium , Prognosis , SARS-CoV-2/metabolism , Serine Endopeptidases/metabolism
3.
Front Immunol ; 12: 624703, 2021.
Article in English | MEDLINE | ID: covidwho-1354863

ABSTRACT

Accumulating evidence suggests that the breakdown of immune tolerance plays an important role in the development of myocarditis triggered by cardiotropic microbial infections. Genetic deletion of immune checkpoint molecules that are crucial for maintaining self-tolerance causes spontaneous myocarditis in mice, and cancer treatment with immune checkpoint inhibitors can induce myocarditis in humans. These results suggest that the loss of immune tolerance results in myocarditis. The tissue microenvironment influences the local immune dysregulation in autoimmunity. Recently, tenascin-C (TN-C) has been found to play a role as a local regulator of inflammation through various molecular mechanisms. TN-C is a nonstructural extracellular matrix glycoprotein expressed in the heart during early embryonic development, as well as during tissue injury or active tissue remodeling, in a spatiotemporally restricted manner. In a mouse model of autoimmune myocarditis, TN-C was detectable before inflammatory cell infiltration and myocytolysis became histologically evident; it was strongly expressed during active inflammation and disappeared with healing. TN-C activates dendritic cells to generate pathogenic autoreactive T cells and forms an important link between innate and acquired immunity.


Subject(s)
Autoimmune Diseases/metabolism , Autoimmunity , Cardiomyopathies/metabolism , Inflammation Mediators/metabolism , Myocarditis/metabolism , Myocardium/metabolism , Tenascin/metabolism , Animals , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , Cardiomyopathies/immunology , Cardiomyopathies/pathology , Cellular Microenvironment , Humans , Myocarditis/immunology , Myocarditis/pathology , Myocardium/immunology , Myocardium/pathology , Self Tolerance , Signal Transduction
4.
Viruses ; 13(6)2021 05 28.
Article in English | MEDLINE | ID: covidwho-1256664

ABSTRACT

Patients with underlying cardiovascular conditions are particularly vulnerable to severe COVID-19. In this project, we aimed to characterize similarities in dysregulated immune pathways between COVID-19 patients and patients with cardiomyopathy, venous thromboembolism (VTE), or coronary artery disease (CAD). We hypothesized that these similarly dysregulated pathways may be critical to how cardiovascular diseases (CVDs) exacerbate COVID-19. To evaluate immune dysregulation in different diseases, we used four separate datasets, including RNA-sequencing data from human left ventricular cardiac muscle samples of patients with dilated or ischemic cardiomyopathy and healthy controls; RNA-sequencing data of whole blood samples from patients with single or recurrent event VTE and healthy controls; RNA-sequencing data of human peripheral blood mononuclear cells (PBMCs) from patients with and without obstructive CAD; and RNA-sequencing data of platelets from COVID-19 subjects and healthy controls. We found similar immune dysregulation profiles between patients with CVDs and COVID-19 patients. Interestingly, cardiomyopathy patients display the most similar immune landscape to COVID-19 patients. Additionally, COVID-19 patients experience greater upregulation of cytokine- and inflammasome-related genes than patients with CVDs. In all, patients with CVDs have a significant overlap of cytokine- and inflammasome-related gene expression profiles with that of COVID-19 patients, possibly explaining their greater vulnerability to severe COVID-19.


Subject(s)
COVID-19/immunology , COVID-19/physiopathology , Cardiomyopathies/immunology , Coronary Artery Disease/immunology , Venous Thromboembolism/immunology , COVID-19/complications , COVID-19/genetics , Cardiomyopathies/complications , Cardiomyopathies/genetics , Coronary Artery Disease/complications , Coronary Artery Disease/genetics , Cytokines/genetics , Datasets as Topic , Humans , Immunocompromised Host/genetics , Inflammasomes/genetics , Lymphocyte Count , Patient Acuity , RNA-Seq , Venous Thromboembolism/complications
5.
Nat Rev Cardiol ; 18(3): 169-193, 2021 03.
Article in English | MEDLINE | ID: covidwho-851285

ABSTRACT

Inflammatory cardiomyopathy, characterized by inflammatory cell infiltration into the myocardium and a high risk of deteriorating cardiac function, has a heterogeneous aetiology. Inflammatory cardiomyopathy is predominantly mediated by viral infection, but can also be induced by bacterial, protozoal or fungal infections as well as a wide variety of toxic substances and drugs and systemic immune-mediated diseases. Despite extensive research, inflammatory cardiomyopathy complicated by left ventricular dysfunction, heart failure or arrhythmia is associated with a poor prognosis. At present, the reason why some patients recover without residual myocardial injury whereas others develop dilated cardiomyopathy is unclear. The relative roles of the pathogen, host genomics and environmental factors in disease progression and healing are still under discussion, including which viruses are active inducers and which are only bystanders. As a consequence, treatment strategies are not well established. In this Review, we summarize and evaluate the available evidence on the pathogenesis, diagnosis and treatment of myocarditis and inflammatory cardiomyopathy, with a special focus on virus-induced and virus-associated myocarditis. Furthermore, we identify knowledge gaps, appraise the available experimental models and propose future directions for the field. The current knowledge and open questions regarding the cardiovascular effects associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are also discussed. This Review is the result of scientific cooperation of members of the Heart Failure Association of the ESC, the Heart Failure Society of America and the Japanese Heart Failure Society.


Subject(s)
Cardiomyopathies/physiopathology , Inflammation/physiopathology , Myocarditis/physiopathology , Virus Diseases/physiopathology , Animals , Antiviral Agents/therapeutic use , Autoimmunity/immunology , Biopsy , COVID-19/physiopathology , COVID-19/therapy , Cardiomyopathies/diagnosis , Cardiomyopathies/immunology , Cardiomyopathies/therapy , Cardiomyopathy, Dilated , Coronavirus Infections/immunology , Coronavirus Infections/physiopathology , Coronavirus Infections/therapy , Coxsackievirus Infections/immunology , Coxsackievirus Infections/physiopathology , Coxsackievirus Infections/therapy , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/physiopathology , Cytomegalovirus Infections/therapy , Disease Models, Animal , Echovirus Infections/immunology , Echovirus Infections/physiopathology , Echovirus Infections/therapy , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/physiopathology , Epstein-Barr Virus Infections/therapy , Erythema Infectiosum/immunology , Erythema Infectiosum/physiopathology , Erythema Infectiosum/therapy , HIV Infections/physiopathology , Hepatitis C/immunology , Hepatitis C/physiopathology , Hepatitis C/therapy , Humans , Immunoglobulins, Intravenous/therapeutic use , Immunologic Factors/therapeutic use , Inflammation/diagnosis , Inflammation/immunology , Inflammation/therapy , Influenza, Human/immunology , Influenza, Human/physiopathology , Influenza, Human/therapy , Leukocytes/immunology , Myocarditis/diagnosis , Myocarditis/immunology , Myocarditis/therapy , Myocardium/pathology , Prognosis , Roseolovirus Infections/immunology , Roseolovirus Infections/physiopathology
6.
Nat Med ; 26(11): 1701-1707, 2020 11.
Article in English | MEDLINE | ID: covidwho-722216

ABSTRACT

Recent reports highlight a new clinical syndrome in children related to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)1-multisystem inflammatory syndrome in children (MIS-C)-which comprises multiorgan dysfunction and systemic inflammation2-13. We performed peripheral leukocyte phenotyping in 25 children with MIS-C, in the acute (n = 23; worst illness within 72 h of admission), resolution (n = 14; clinical improvement) and convalescent (n = 10; first outpatient visit) phases of the illness and used samples from seven age-matched healthy controls for comparisons. Among the MIS-C cohort, 17 (68%) children were SARS-CoV-2 seropositive, suggesting previous SARS-CoV-2 infections14,15, and these children had more severe disease. In the acute phase of MIS-C, we observed high levels of interleukin-1ß (IL-1ß), IL-6, IL-8, IL-10, IL-17, interferon-γ and differential T and B cell subset lymphopenia. High CD64 expression on neutrophils and monocytes, and high HLA-DR expression on γδ and CD4+CCR7+ T cells in the acute phase, suggested that these immune cell populations were activated. Antigen-presenting cells had low HLA-DR and CD86 expression, potentially indicative of impaired antigen presentation. These features normalized over the resolution and convalescence phases. Overall, MIS-C presents as an immunopathogenic illness1 and appears distinct from Kawasaki disease.


Subject(s)
COVID-19/blood , COVID-19/immunology , Leukocytes/classification , Leukocytes/pathology , SARS-CoV-2/immunology , Systemic Inflammatory Response Syndrome/blood , Systemic Inflammatory Response Syndrome/immunology , Adolescent , Age of Onset , Blood Coagulation/physiology , COVID-19/complications , COVID-19/epidemiology , Cardiomyopathies/blood , Cardiomyopathies/etiology , Cardiomyopathies/immunology , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Female , Humans , Immunophenotyping , Inflammation/blood , Inflammation/etiology , Inflammation/immunology , Leukocytes/immunology , Male , Systemic Inflammatory Response Syndrome/complications , Systemic Inflammatory Response Syndrome/epidemiology
7.
J Investig Med High Impact Case Rep ; 8: 2324709620947577, 2020.
Article in English | MEDLINE | ID: covidwho-695219

ABSTRACT

A 66-year-old male patient with coronavirus disease-19 (COVID-19) developed cardiogenic shock with echocardiographic evidence of decreased left ventricular ejection fraction and global hypokinesia concomitant with a robust systemic inflammatory response. Following the administration of convalescent plasma therapy and inotropic support, left ventricular function recovered fully in accordance with the decrease in the concentration of the inflammatory markers. Thus, we demonstrate the presence of transient reversible cardiomyopathy in a patient with severe COVID-19 and illustrate the association of acute cardiac dysfunction with profound systemic inflammation among COVID-19 patients.


Subject(s)
Betacoronavirus , Cardiomyopathies/therapy , Coronavirus Infections/therapy , Pneumonia, Viral/therapy , Aged , COVID-19 , Cardiomyopathies/complications , Cardiomyopathies/immunology , Coronavirus Infections/complications , Coronavirus Infections/immunology , Coronavirus Infections/metabolism , Humans , Immunization, Passive/methods , Male , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/immunology , SARS-CoV-2 , Stroke Volume , Treatment Outcome , Ventricular Function, Left , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL